1. Deep Borehole Disposal of Radioactive Waste: Next Steps and Applicability to National Programs
- Author:
- Peter Swift and Andrew Newman
- Publication Date:
- 11-2022
- Content Type:
- Special Report
- Institution:
- Center on Global Energy Policy (CGEP), Columbia University
- Abstract:
- Deep borehole disposal of high-level radioactive waste has been proposed repeatedly and in multiple countries over the last several decades, but the concept remains unproven in the field. A straightforward research, development, and demonstration test program could provide answers to basic questions about the viability of the concept. This program would involve the construction of two or perhaps more boreholes to test disposal concepts using surrogate, nonradioactive waste. Field tests would focus on the engineering and operational feasibility of deep borehole disposal, the availability of favorable rock types at depth, appropriate designs for waste forms and waste packaging, and the long-term performance of borehole repositories. Because of the scale of the project, it might best be undertaken as an international collaboration, perhaps led by the US Department of Energy but with participation from multiple national programs to ensure it meets a wide range of needs. Mined geologic repositories, which have been the preferred approach for permanent disposal of high-level radioactive wastes for most national programs for many decades, will likely remain the preferred disposal option for countries with large inventories of commercial spent nuclear fuel. If deep borehole disposal can be demonstrated as a viable concept, however, it may be an attractive alternative disposal option for countries with small inventories of materials requiring permanent geologic isolation. For example, national programs with limited amounts of waste from research or medical isotope production reactors may not need to incur the cost of a full-scale mined repository. Other countries may find borehole disposal a useful option for permanently disposing of small quantities of waste that could otherwise pose security risks, including both fissile materials and high-activity sealed radioactive sources used in industrial and medical applications. For programs committed to disposing of large inventories of spent nuclear fuel and high-level waste in mined repositories, deep boreholes may provide options for prompt disposal of small volumes of specialty wastes that may otherwise have to wait for repository construction. This report reviews the borehole disposal concepts proposed to date, identifies potentially suitable waste forms worldwide, and proposes a field-testing program that could resolve many remaining technical questions and inform future programmatic decisions. The report also summarizes the potential benefits of borehole disposal in terms of public acceptance, cost, and security.
- Topic:
- Energy Policy, Nuclear Waste, Nuclear Energy, and Borehole
- Political Geography:
- North America and United States of America